- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Throop, Heather_L (2)
-
Allan, Gerard_J (1)
-
Aparecido, Luiza_M_T (1)
-
Belnap, Jayne (1)
-
Cooper, Hillary_F (1)
-
Doughty, Christopher_E (1)
-
Gehring, Catherine_A (1)
-
Hultine, Kevin_R (1)
-
Koepke, Dan_F (1)
-
Moran, Madeline_E (1)
-
Whitham, Thomas_G (1)
-
de_Graaff, Marie-Anne (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Our understanding of carbon and nutrient dynamics in globally vast and socioeconomically critical dryland ecosystems lags behind mesic systems. Litter decomposition models consistently underestimate measured decomposition in these regions. Both models and measurements largely represent spatially dominant intercanopy areas; however, little litter resides in these interspaces as transport vectors move litter to other microsites such as beneath plant canopies and buried in soil. Abiotic and biotic conditions differ among microsites, but few studies have characterized microsite impacts on decomposition. We collated data on microsites where litter accumulates. In microsites with sufficient available data, we used meta-analysis to test hypotheses on decomposition relative to litter in intercanopy spaces. Decomposition was lower under woody plant canopies than in intercanopy spaces. Buried litter decomposed faster than surface litter. There was no difference in decomposition between surface litter and litter suspended aboveground to simulate standing dead. All microsite contrasts had exceptions, suggesting that site-specific characteristics influence microclimate and subsequent decomposition. Extrapolation of decomposition rates to the landscape-level (using estimates of microsite-specific decomposition rates multiplied by litter pools), suggests that decomposition estimates based on intercanopy data alone underrepresent landscape-level decomposition. Thus, despite advances in the understanding of mechanistic decomposition drivers in drylands advancing, most studies are spatially unrepresentative analyses in intercanopy areas and this will underestimate decomposition at the landscape level. Expanding the ecological relevance of decomposition processes to be useful for predicting larger-scale carbon and nutrient dynamics requires improved characterization of dryland litter distribution, coupled with a mechanistic understanding of decomposition in microsites where litter accumulates.more » « less
-
Moran, Madeline_E; Aparecido, Luiza_M_T; Koepke, Dan_F; Cooper, Hillary_F; Doughty, Christopher_E; Gehring, Catherine_A; Throop, Heather_L; Whitham, Thomas_G; Allan, Gerard_J; Hultine, Kevin_R (, New Phytologist)Summary Populus fremontiiis among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper‐arid riparian corridors. Yet,P. fremontiiforests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C.We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eightP. fremontiipopulations spanning a 5.3°C mean annual temperature gradient in a well‐watered common garden, and at source locations throughout the lower Colorado River Basin.Two major results emerged. First, despite having an exceptionally highTcrit(the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceededTcrit, requiring evaporative leaf cooling to maintain leaf‐to‐air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations.Taken together, results suggest that under well‐watered conditions,P. fremontiican regulate leaf temperature belowTcritalong the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.more » « less
An official website of the United States government
